POPD-11 (Session: PS02)
Amanda Laubmeier
Texas Tech University
"Interplay between pesticide use and natural predator behaviors"
We are interested in the combination of natural predators and conventional pesticides which contribute to the control of aphids, an agricultural pest. Although aphids are prey to many insects, the unique landscape for large-scale farming can reduce migration to and mobility within agricultural fields. In contrast, some small-scale and natural practices can foster an efficient natural predator community. Alongside these landscape choices, insecticide use can cause predator disorientation and sluggishness, further impacting mobility. To investigate how these different effects come together to determine pest control, we develop a partial differential equation model for predator-prey interactions within an agricultural field for a single season. We describe realistic use of pesticide sprays, which occur in pulses after pests pass a threshold abundance. The model also describes predator prey-taxis, or movement towards food sources, and how this behavior is impacted by pesticides. We consider these effects for a variety of migration and hunting behaviors and discuss the implications of our results for different agricultural practices.
POPD-12 (Session: PS02)
Nusrat Tabassum
Texas Tech University
"The effects of temperature change on prey suppression by natural predators"
The sustainability of an ecosystem is determined by the relationship between predators and prey. The factors that play an important role in this context are temperature, body mass, foraging area, intraspecific competition and intraguild predation, all of which impact a predator's functional response. In the context of global warming, changing temperature could play a key role in changing prey suppression. Depending on the temperature, prey and predator can become active or inactive and temperature can affect other behaviors such as eating habit, foraging area, body growth etc. We use a dynamic model to describe prey suppression. We illustrate how predator behaviors would change with temperature at different times in a day or when average temperature increases.
POPD-13 (Session: PS02)
Jorge Arroyo-Esquivel
Department of Mathematics, UC Davis
"Long transients appear in predator-prey systems with group defense and nonreproductive stages"
During recent years, the study of long transients has been expanded in ecological theory to account for shifts in long-term behavior of ecological systems. These long transients consist of long periods of time where a system is apparently in equilibrium; after which the system undergoes an abrupt change into qualitatively different dynamics. In this work, we analyze the potential for long transients in a model for a predator-prey system in which the prey present group defense, and their nonreproductive stages do not contribute to predator growth. This model has been previously used to analyze kelp-urchin dynamics, but it can be used in other systems such as colonial spider-wasp or honeybee-hornet systems. We have identified this system presents crawl-by transients near the extinction and carrying capacity states of prey. In addition, we identify a transcritical bifurcation in our system, under which a ghost limit cycle appears. We are able to estimate the escape time of our system from these transients using perturbation theory. This work advances an understanding of how systems shift between alternate stable states and their duration of staying in a given regime.
POPD-14 (Session: PS02)
Russell Milne
University of Waterloo
"Effects of overfishing on coral reefs over local and regional scales"
Coral reefs are highly connected habitats, with dynamics that take place over very large spatial scales. However, performing field work over these large scales is challenging, and most mathematical modelling of coral reefs has focused on local dynamics. Here, we use a mechanistic, spatially explicit coral reef model to simulate the regional and local effects of three coral reef stressors (overfishing, nutrient loading and crown-of-thorns starfish invasions). We find three different local regimes (coral-dominant, macroalgae-dominant, macroalgae-only with no coral or fish), with sharp boundaries that depend on the interaction between fishing rate and nutrient loading rate. We also find that overfishing within a single patch can decrease coral cover by significant amounts in non-overfished patches. Additionally, increasing the proportion of patches that are overfished causes nonlinear declines in coral cover in non-overfished patches; this decline is strongly dependent on the configuration of which patches are overfished. The combination of crown-of-thorns starfish presence and high nutrient loading increases the variability of coral populations, and limits the space covered by both coral and macroalgae. These effects are present systemwide even when nutrient loading is restricted to one patch. Our findings have implications for both future field work and implementing conservation objectives.
POPD-15 (Session: PS02)
Clara Woodie
University of California, Riverside
"The stabilizing and destabilizing effects of cannibalism in an intraguild predation system"
Intraguild predation (IGP), an interaction in which the intraguild (IG) predator competes with its intraguild (IG) prey for a shared resource, is ubiquitous in nature despite original theory predicting limited coexistence. A proposed stabilizing mechanism is cannibalism in the IG predator through its regulation of the predator population, which decreases predation pressure on the IG prey. We add cannibalism to an IG predator and include a cannibalism preference parameter to explore how the predator's preference for IG prey vs. conspecifics affects dynamics. We perform linear stability analyses. Our results show that strong cannibalism preference in the IG predator can 1) stabilize unstable IGP systems or 2) destabilize already-stable IGP systems depending on prey competitive ability. When the prey is a superior competitor, keeping with the assumption of original IGP theory, strong cannibalism preference drives the predator extinct. When the predator is a similar competitor for the resource as the prey, a common occurrence in natural IGP systems, preference for conspecifics over heterospecifics stabilizes this otherwise unstable system where the prey goes extinct. These results suggest that cannibalism preference, by altering the relative strengths of competition vs. predation between the predator and prey, determines the long-term stability of an IGP system.
POPD-16 (Session: PS02)
Thaddeus Seher
University of California, Merced
"AddTag, a two-step approach that overcomes targeting limitations of precision genome editing"
CRISPR/Cas-induced genome editing is a powerful tool for genetic engineering, however targeting constraints limit which loci are editable with this method. Since the length of a DNA sequence impacts the likelihood it overlaps a unique target site, precision editing of small genomic features with CRISPR/Cas remains an obstacle. We introduce a novel genome editing strategy that virtually eliminates CRISPR/Cas targeting constraints and facilitates precision genome editing of elements as short as a single base-pair at virtually any locus in any organism that supports CRISPR/Cas-induced genome editing. Our two-step approach first replaces the locus of interest with an “AddTag” sequence, which is subsequently replaced with any engineered sequence, and thus circumvents the need for direct overlap with a unique CRISPR/Cas target site. In this study, we demonstrate the feasibility of our approach by editing transcription factor binding sites within Candida albicans that could not be targeted directly using the traditional gene editing approach. We also demonstrate the utility of the AddTag approach for combinatorial genome editing and gene complementation analysis, and we present a software package that automates the design of AddTag editing.
POPD-17 (Session: PS02)
Benjamin Garcia de Figueiredo
Instituto de Física Teórica - Unesp
"Investigating first-crossing statistics in movement models with home-ranging behavior"
Ecological populations are, in general, not well mixed, and their non-homogeneous use of space modulates their local interactions. Although this range-residency is known to affect important observables such as encounter rates between individuals, many models in population dynamics implicitly or explicitly assume that populations make homogenous use of space. The Ornstein-Uhlenbeck (OU) process is a stochastic process in space that displays the basic characteristics of movement bounded by and centered around a home-range. Within the framework of OU movement models, the crossing statistics of two simultaneous processes serve as a proxy for the encounter statistics of two individuals. While this mathematical problem has been investigated, especially in one dimension, fewer studies have addressed the more ecologically relevant two-dimensional case (2D). In this work, we conduct a numerical and semi-analytical study of the first-crossing statistics of a pair of 2D OU models. We believe this can help build the foundations of more mechanistic and realistic models of population dynamics, based on the scaling properties of individual interactions. Further analytical investigation of this problem may elucidate its general properties.
POPD-18 (Session: PS02)
Rafael Menezes
University of São Paulo
"Feasibility and Resilience in Randomly Assembled Communities"
As our world faces ever-increasing pressure upon many natural environments, it is essential to understand the stability of ecological communities. One of the crucial aspects of stability in rich communities is resilience, which entails information on how quickly the community can recover from small fluctuations in the densities of the populations. Equally relevant is their feasibility, which is indicative of how likely all the populations in the community can coexist, on the assumption that relative growth rates are variable. Despite substantial advancements in the investigation of these measures of stability, their interplay remains largely unexplored. In this work, we performed a comprehensive ecologically-informed exploration of the parameter space of the generalized Lotka-Volterra model integrating variability in type, intensity, and distribution of interspecific ecological interactions to study the broad patterns linking these two aspects of stability. We found a positive correlation between resilience and feasibility, suggesting that more resilient communities are more likely to be feasible. Additionally, we also found that communities with lower densities and intensities of interactions and more competition/exploitation are more resilient, and communities with equal proportions of positive and negative interactions are more feasible. Our study highlights the importance of investigations integrating different aspects of ecological stability.
POPD-19 (Session: PS02)
Joany Mariño
Memorial Univesity of Newfoundland
"Resource seasonality explains latitudinal size and clutch size patterns in a Dynamic Energy Budget model "
Animals show a vast array of geographical variation in phenotypic traits. The most common patterns are the tendency of size and clutch size to increase with latitude among related species. Nevertheless, the precise mechanisms behind these patterns remain controversial. Here, we show how resource seasonality can drive latitudinal trait variation. We conducted numerical simulations of a dynamic energy budget model, quantifying individual biomass and reproductive output, both under constant and seasonal resource conditions. We evaluated 48 different genetically-determined physiological characters (equivalent to different species and represented by the model parameters for assimilation, mobilization, and energy allocation). In both scenarios, we found that resource availability determines interspecific trait differences in the DEB model. Our findings show that individuals can reach greater biomass and reproductive output in a seasonal environment than in a constant environment of equal average resource due to the peaks of food surplus. Our results agree with the classical patterns of interspecific trait variation and provide a mechanistic understanding supporting recent explanatory hypotheses: the resource and the eNPP (net primary production during the growing season) rules. The current alterations to ecosystems and communities make disentangling trait variation increasingly important to understand and predict biodiversity dynamics under environmental change.
POPD-20 (Session: PS02)
Anuraag Bukkuri
Moffitt Cancer Center
"Tortoise and the Hare: On the Contribution of Evolvability to Eco-Evolutionary Dynamics of Competing Species"
Evolvability, the capacity for a population to generate heritable variation and respond to natural selection, is a fundamental concept influencing the adaptations and fitness of individual organisms. For many species, evolvability may be a trait that is subject to natural selection. Evolvability plays a critical role in eco-evolutionary dynamics and may help us understand how species respond to changes in their environment and how species coexistence can arise and be maintained. We create a model of competing species, each with a different evolvability. We then analyze the population and strategy dynamics of the two populations under the conditions of clade initiation, evolutionary tracking, adaptive radiation, and evolutionary rescue. We find that more stable environments favor slower evolving species, while unstable environments favor faster evolving ones. When several niches are available for species to occupy, slower evolving species outcompete faster evolving ones due to the cost of evolvability. Finally, we promote coexistence by disrupting the environment at intermediate frequencies, allowing for cyclical population dynamics of species with differential evolvabilities. Though we frame our discussion in the context of ecology and cancer, our model and analyses are agnostic of any specific application and thus broadly apply to any system capable of evolving.
POPD-21 (Session: PS02)
Evan Haskell
Nova Southeastern University
"Attraction-Repulsion Taxis Mechanisms in a Predator-Prey Model"
We consider a predator-prey model where the predator population favors the prey through biased diffusion toward the prey density, while the prey population employs a chemical repulsive mechanism. This leads to a quasilinear parabolic system. We first establish the global existence of positive solutions. Thereafter we show the existence of nontrivial steady state solutions via bifurcation theory, then we discuss the stability of these branch solutions. Through numerical simulation we analyze the nature of patterns formed and interpret results in terms of the survival and distribution of the two populations.
POPD-22 (Session: PS02)
Rebecca Everett
Haverford College
"Stoichiometric regulation of immune responses in primary producers"
All organisms require carbon and nutrients such as nitrogen for their growth and reproduction. In the presence of pathogens, host defense has been shown to increase with enhanced nutrient availability. Thus, availability of nitrogen may stimulate a host by enhancing its growth as well as immunity response. However, at the same time, nutrient availability may promote infection as higher host growth trades-off with reduced resistance as well as through enhanced pathogen performance. We explore the role of nitrogen availability on infection dynamics of a primary producer host and its pathogen using a stoichiometry-based disease model. Specifically, we test how changes in nitrogen investments in host immune response will alter host biomass build-up and pathogen infection rates.
POPD-23 (Session: PS02)
Daniel Cooney
University of Pennsylvania
"Persistence vs Extinction of Cooperation via Multilevel Selection: The Dynamical Shadow of Lower-Level Selection"
Natural selection often acts simultaneously upon multilevel levels of biological organization, inducing a tension between traits favoring selfish individuals and traits providing collective benefit for the group. Examples of such conflicts arise in settings including the evolution of the early cell, the evolution of virulence, and the sustainable management of common-pool resources. In this talk, we consider a PDE model for the evolution of a cooperative trait in which competition takes place both within groups through individual-level reproduction and between-groups through a group-level birth-death process. Generalizing previous work from evolutionary game theory, we show that there exists a threshold intensity of between-group competition separating regimes in which cooperation goes extinct or persists in the population. We additional provide bounds on the long-time average payoff of the population, showing that the population cannot outperform the payoff of a full-cooperator group in the long run and allowing us to determine when measure-valued solutions to the multilevel dynamics converge to a steady-state density or forever oscillate. When intermediate levels of cooperation are most favorable to the group, this means that multilevel selection will always promote suboptimal collective outcomes, and no level of between-group competition can erase the shadow of lower-level selection.
POPD-24 (Session: PS02)
Vahini Reddy Nareddy
University of Massachusetts Amherst
"Transition states in two-cycle ecological oscillators: dynamics and forecasting"
Many spatially-extended systems of ecological oscillators exhibit spatial synchrony with periodic oscillations in time. If the individual oscillators have two-cycle behavior, the transition to synchrony as a function of noise and coupling strength is in the Ising universality class, ensuring that the stationary properties of the ecological systems can be replicated by the simple Ising model [1]. In the Ising representation, the two phases of oscillations (high at odd times or high at even times) of an individual oscillator are represented by spin-up and spin-down. However, the behavior of an individual ecological oscillator suggests the existence of a transition state along with the two phases of oscillations. The oscillations at this transition state have amplitude very close to zero. To study such systems, we use Blume-Capel representation where the spin can take three values S={+1,-1,0} with S=0 as the transition state and S={-1,+1} as the two phases of oscillations. We model the spatially-extended ecological systems with coupled lattice maps in two-cycle regime and represent them with three state model. We also discuss maximum likelihood methods to infer the Blume-Capel representation. [1] V.Nareddy,et.al,J R Soc Interface(2020)
POPD-25 (Session: PS02)
Silas Poloni Lyra
Institute for Theoretical Physics - UNESP
"Intraguild Predation in Periodic Habitats"
Fragmentation of natural landscapes is an ongoing process, mainly led by human activities, such as urban growth, roadway construction and farming. This phenomena may lead to many changes in the dynamics of populations that live in such landscapes, posing new challenges to our understanding of population persistence and diversity therein. In this work we consider an Intraguild Predation (IGP) model, a community module composed of two consumers of a shared resource, with a predation relation between such consumers, usually referred as IG-Prey and IG-Predator. Using Cobbold and Yurk's homogenization technique, we formulate and investigate the problem in a periodic habitat, composed of two types of patches where IGP relations are present, but allowed to have different parameters, such as less resource consumption, enhanced mortality or reduced resource productivity in one of the patches. Our results show that coexistence between IG-Prey and IG-Predator in heterogeneous landscapes is facilitated or hardened depending on the resource's habitat preference, allowing for coexistence in parameter regions which, in homogeneous landscapes, would be impossible, for example.
POPD-26 (Session: PS03)
Vitor De Oliveira Sudbrack
DEE - UniL
"Population dynamics in highly fragmented landscapes"
It's important to study how populations respond to changes in habitat distribution in landscapes. In this project, we use numerical methods to simulate reaction-diffusion equations in artificial binary landscapes with different structural distributions of the same habitat amount. We discuss the net effects of fragmentation into the steady total population in those landscapes. These effects are dependent on matrix hostility and we analyse 3 different scenarios: soft, intermediate and hostile matrices. In soft matrices, highly fragmented landscapes support greater total populations compared to slightly fragmented landscapes - and the opposite is true for hostile matrices. Regarding conservation, highly fragmented landscapes eventually led to the extinction of species for a sufficiently hostile matrix in low HA. We compared statistical models to conclude those where the effects of fragmentation and HA are interdependent presented the best statistical descriptions of average abundance in landscapes. Our synthetic data supported that fragmentation effects are not negligible compared to habitat loss, and effects of fragmentation considering linear interdependence with HA and effects of fragmentation per se are similar in direction across the HA gradient. The model we present can generate synthetic data to elucidate patterns of the effects of fragmentation on the ecological value of landscapes.
POPD-27 (Session: PS03)
Simon Syga
TU Dresden
"Studying the interplay of spatio-temporal interactions and evolutionary dynamics during cancer cell invasion"
Genome instability and mutations as well as the activation of invasion are defining characteristics of cancer. However, in most mathematical models only one of the two aspects is studied at a time, neglecting the complex interplay between the spatio-temporal interactions and evolutionary dynamics. To fill this gap, we here propose a mathematical model of individual cells that migrate, proliferate, die, and pass on their properties to their offspring with small variations.In particular, we assume that the set of individual properties results in a phenomenological fitness of each cell influencing its proliferation rate.In computer simulations, we show that the interplay of evolution and spatio-temporal dynamics leads to a propagating wave of invading cells, where the wave speed increases over time and clones of higher fitness appear preferably at the wave front.We use a mean-field approach to show that the system can be approximated by a PDE that is similar to the KPP-Fisher equation.We also show that the increase in average fitness over time is proportional to the variance in fitness in the population, in agreement with Fisher's fundamental theorem of natural selection.
POPD-28 (Session: PS03)
Peter Nabutanyi
Bielefeld University, Germany
"Modelling Interaction of Genetic Problems in Small Populations and Minimum Viable Population Size"
An important goal for conservation is to define minimum viable population sizes (MVPs) for long-term persistence in the face of ecological and genetic problems. Such genetic problems include mutation accumulation (MA), inbreeding depression (ID) and loss of genetic variation at loci under balancing selection, but most studies on MVPs only include ID. Verbal arguments suggest that extinction risk is exacerbated when genetic problems interact, but a comprehensive quantitative theory is missing. Using deterministic and stochastic eco-evolutionary models, we estimated MVP size as the lowest population size that avoids an eco-evolutionary extinction vortex after sufficient time for mutation-selection-drift equilibrium to establish. As mutation rates increase, MVP size decreases rapidly under balancing selection but increases rapidly under ID and MA. MVP sizes also increase rapidly with increasing number of loci with the same or different selection mechanism until a point is reached at which even arbitrarily large populations cannot survive. However, when keeping the number of loci constant, the observed MVP size is dominated by the mechanism which when in isolation yields the smallest MVP estimate. For better estimates, there is need for more empirical studies to reveal how different genetic problems interact in the genome.
POPD-29 (Session: PS03)
Martin Pontz
Tel Aviv University
"Aneuploidy as a transient evolutionary step to adaptation"
Aneuploidy, i.e. the change to a different number of chromosomes in single cells, occurrs quite frequently in nature. Prominent examples are human cancer cells and yeast populations under stress. We investigate if and under which conditions aneuploidy can facilitate local adaptation. We analyze both mathematical models and numerical simulations in which aneuploidy acts as a transient step towards a better adapted population. The main methods are based on the Wright-Fisher model and the theory of branching processes. One example for an important quantity that is derived, is the expected time until the population is successfully adapted. It depends heavily on the mutation rate, which is the rarest event that has to occur in order to achieve adaptation. This work can be seen as a first step towards establishing basic evolutionary theory for the process of aneuploidy as it seems currently to be lacking.
POPD-30 (Session: PS03)
Ayan Das
Center for Ecological Sciences, Indian Institute of Science, Bengaluru
"Demographic noise can promote abrupt transitions in ecological systems"
Strong positive feedback is considered a necessary condition to observe abrupt shifts of ecosystems. A few previous studies have shown that demographic noise - arising from the probabilistic and discrete nature of birth and death processes in finite systems - makes the transitions gradual or continuous. In this paper, we show that demographic noise may, in fact, promote abrupt transitions in systems that would otherwise show continuous transitions. We begin with a simple spatially-explicit individual-based model with local births and deaths influenced by positive feedback processes. We then derive a stochastic differential equation that describes how local probabilistic rules scale to stochastic population dynamics. The infinite-size well-mixed limit of this SDE for our model is consistent with mean-field models of abrupt regime-shifts. Finally, we analytically show that as a consequence of demographic noise, finite-size systems can undergo abrupt shifts even with weak positive interactions. Numerical simulations of our spatially-explicit model confirm this prediction. Thus, we predict that small-sized populations and ecosystems may undergo abrupt collapse even when larger systems - with the same microscopic interactions - show a smooth response to environmental stress.
POPD-31 (Session: PS03)
Wissam Barhdadi
Ghent University
"Analyzing eco-evolutionary dynamics under environmental change in a physiologically-structured individual-based model"
Recent rapid changes in the environment increasingly affect populations around the globe. Theoretical and empirical studies show that both individual life-history traits as well as evolutionary responses could mediate a population's response to these changes. Population models that integrate both ecological processes arising from individual life-history traits and the evolutionary forces acting on these traits can provide better predictions and a general approach for analyzing eco-evolutionary dynamics of populations facing rapid environmental change.We propose an individual-based modelling (IBM) framework adopting standardized submodels representing the life-history of individuals as well as inheritance mechanisms of adaptive traits. IBMs provide an intuitive approach to integrate ecological and evolutionary processes. Adopting an energy-budget based submodel to represent an individual's life-history allows for the emergence of individual fitness within the local environment. Further integration of a quantitative genetic approach to inheritance of adaptive life-history traits (resulting from energy-budget parameters), allows for the modelling of eco-evolutionary feedbacks as a function of the population's environment. In this simulation-based work, we explore the modelling framework to analyze the emerging eco-evolutionary dynamics in a Daphnia magna laboratory population. This analysis underpins the further coupling of evolutionary and ecological theory in populations models.
POPD-32 (Session: PS03)
Connah Johnson
University of Warwick
"ChemChaste: Modelling chemical dynamics in spatially distributed bio-films"
Biofilms are ubiquitous in medical settings. Biofilms can contain multiple distinct bacterial strains which complicate the task of tackling infections. Mathematical modelling can help us improve our understanding of, and design better-informed experiments to probe, the dynamics of such systems. We seek to understand the biofilm wide dynamics through developing a hybrid continuum-discrete software library, ChemChaste. Building upon the multi-scale simulation package Chaste, ChemChaste introduces the means to simulate general reaction-diffusion PDEs coupled to individual based cell cycle models. Each cell within the simulation contains its own metabolic pathways, cell cycle model, and membranous transport to enable the simulation of complex chemical interactions between heterogeneous communities. The emergence of structure within the communities is simulated through the segregation of cell types driven by the chemical signaling and external reaction systems. This combination of cell based and external domain reactions enables ChemChaste to simulate chemical dynamics occurring within biofilms. From this we probe the role of microenvironment-metabolism feedback on the community structure and infer how the distribution of cell types may protect the community from external stress. Our results provide insights which may further our understanding of bacterial infections in clinical practice.
POPD-33 (Session: PS03)
Sou Tomimoto
Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University
"Modeling mutation accumulation and expansion in long-lived trees with complex branching structure"
Somatic mutations accumulated in trees have now become quantitatively detectable with recent progresses in next-generation sequencing (NGS) technology. This is the first step to understand the impacts of somatic mutations on longevity of trees. However, NGS can only detect mutations that are shared by majority of stem cells. Minor somatic mutations may be hidden in many branches in the same individual. Because the processes of mutation accumulation and expansion remain poorly understood, we constructed a mathematical model at the stem cell population level to simulate these processes in silico. In our model, the growth of tree is described as a combination of elongation and branching processes. At these processes, stem cells in each meristem can be selected randomly or cell lineage persists for each stem cell without random selection. Depending on the randomness in stem cell selections, we developed three different models and compared the number and pattern of accumulated mutations among models in a branching structure measured in a Popular tree. We found that randomness in the selection process contributes to a decreased accumulation of somatic mutations. Comparison of our predictions with the data highlighted the possibility that more somatic mutations are accumulated in long-lived trees than previously expected.
POPD-34 (Session: PS03)
Baeckkyoung Sung
KIST Europe / UST Korea
"Endocrine dynamics modelling on the hypothalamic-pituitary-gonadal axis of the aquatic lower vertebrates"
The endocrine signalling pathways of the lower vertebrates in the aquatic environments (e.g., fish and amphibians) comprise multiscale biochemical networks ranging from the subcellular transcriptomes, cell and tissue-specific metabolisms, and hormone-mediated inter-organ communications. The entire signalling circuitry thus typically demonstrates a dynamic complexity controlled by the physiological mechanisms such as cardiovascular circulation and neurosecretory regulations. The primary cross-talk paths involved in this circuitry can be effectively reduced to the serial multi-organ system linking the brain, ovary or testis, and liver, which is often called the hypothalamic-pituitary-gonadal (HPG) axis.In this presentation, we develop a general theoretical framework as a model for the signalling pathway network that regulates the HPG axis of the aquatic lower vertebrates. A linear system of ordinary differential equations was constructed to represent the metabolic networking structure where the uni- and bi-directional signalling flows and homeostatic feedback loops were coupled together. The model was designed to predict the dynamic behaviours of hormone syntheses in the HPG axis by simulating the environmentally relevant steroidogenic perturbations. Using this mechanistic model, it was shown that some potential scenarios of ecological risks could be quantitatively predicted in terms of the reproductive toxicology.
POPD-35 (Session: PS03)
Samuel Dijoux
Dept. of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budejovice, Czech Republic
"'Symmetry in asymmetries' of body sizes and productivities drives consumer coexistence in multi-channel food webs"
Multi-channel food webs are shaped by the ability of apex predators to link asymmetric energy flows in mesohabitats differing in productivity and community traits. While body size is a fundamental trait underlying life histories and demography, its implications for structuring multi-channel food webs are unexplored. To fill this gap, we develop a model that links population responses to predation and resource availability to community-level patterns using a tri-trophic food web model with two populations of intermediate consumers and a size-selective top predator. We show that asymmetries in mesohabitat productivities and consumer body sizes drive food web structure, merging previously separate theory on apparent competition and emergent Allee effects (i.e., abrupt collapses of top predator populations). Our results yield theoretical support for empirically observed stability of asymmetric multi-channel food webs and discover three novel types of emergent Allee effects involving intermediate consumers, multiple populations or multiple alternative stable states.
POPD-1 (Session: PS05)
Emmanuel Adabor
Ghana Institute of Management and Public Administration
"On the analysis of antigenic relatedness of influenza A (H3N2) viruses"
An accurate assessment of antigenic relatedness between influenza viruses is important for vaccine strain recommendations and influenza surveillance. Due to the mechanisms that result in frequent changes in the antigenicities of strains, it is desirable to obtain an antigenic relatedness measure that account for specific changes in strains that are of epidemiological importance in influenza. A computational model was developed using distinguishing features of antigenic variants to analyze antigenic relatedness among influenza strains. The features comprised of cluster information, amino acid sequences located in known antigenic and receptor-binding sites of influenza A (H3N2). In order to assess validity of parameters, accuracy and relevance of model to vaccine effectiveness, the model was applied to influenza A (H3N2) viruses due to their abundant genetic data and epidemiological relevance to influenza surveillance. It was found that all model parameters were determinants of antigenic relatedness between strains and that the model accurately predicts the antigenic relatedness between influenza A (H3N2) viruses. The methods presented in this study will potentially complement the global efforts in influenza surveillance.
POPD-10 (Session: PS05)
Robert West
Department of Physics at Bar-Ilan University
"Evolution of a Fluctuating Population in a Switching Environment: Random versus Periodic"
Environmental changes greatly influence the evolution of populations. In this talk, we discuss the dynamics of a population of two strains, one growing slightly faster than the other, competing for resources in a time-varying binary environment modeled by a carrying capacity that switches either randomly or periodically between states of resources abundance and scarcity [1,2]. The population dynamics is characterized by demographic noise (birth and death events) coupled to the fluctuating population size [2,3]. By combining analytical and simulation methods, we elucidate the similarities and differences of evolving subject to stochastic and periodic switching. The population size distribution is generally found to be broader under intermediate and fast random switching than under periodic variations. This results in markedly different asymptotic behaviors of the fixation probability under random and periodic switching environments [1]. We also determine the conditions under which the fixation probability of the slow strain is maximal [1].[1] A. Taitelbaum, R. West, M. Assaf, and M. Mobilia, Physical Review Letters 125, 048105:1-6 (2020).[2] K. Wienand, E. Frey, and M. Mobilia, Physical Review Letters 119, 158301:1-6 (2017) and J. Royal Society Interface 15, 20180343:1-12 (2018).[3] R. West and M. Mobilia, Journal of Theoretical Biology 491, 110135:1-14 (2020).
POPD-2 (Session: PS05)
Matthew Edgington
The Pirbright Institute
"Split drive killer-rescue: A novel threshold-dependent gene drive"
A wide range of gene drive mechanisms are predicted to increase in frequency within a population even when deleterious to individuals carrying them. This should also allow associated desirable genetic material to increase in frequency. Gene drives have garnered much attention for their potential use against a range of globally important problems including disease vectors, crop pests and invasive species. Here we propose a novel gene drive mechanism that could be engineered using a combination of toxin-antidote and CRISPR components, each of which are already being developed for other gene drive designs. Population genetics mathematical models are developed here and used to demonstrate the threshold-dependent nature of the proposed system alongside its robustness to a wide range of performance parameters, each of which are of practical significance given that real-world components are inevitably imperfect. We show that although a mechanism known to cause resistance may cause the system to break down, under certain conditions, it should persist over time scales relevant for genetic control programs. This work proposes a promising new class of gene drive (with several highly desirable characteristics) that may be engineered by combining components already widely in development.
POPD-3 (Session: PS05)
Lucy Lansch-Justen
The University of Edinburgh
"Quantifying Stress-induced Mutagenesis"
Exposure to low concentrations of antimicrobials selects for resistance mutations and can induce phenotypic stress responses in microbes. Some of these responses increase the mutation rate, called stress-induced mutagenesis (SIM). But because stress responses additionally influence the whole population dynamics it is unclear whether SIM actually results in more or fewer resistant mutants. Moreover, SIM affects mutation rate estimates via fluctuation assays (a standard lab approach for measuring microbial mutation rates) because underlying modelling assumptions are not met. We describe an appropriate model of a microbial population which is exposed to stress and expresses a stress response and propose a new method for inferring the mutation rate in this case. Using the bacterial SOS response as an example we demonstrate that our derived mutant count distribution fits simulated data. In contrast, current methods are able to estimate the mean mutation rate in the population but not distinct mutation rates of subpopulations with low/high stress response levels.
POPD-4 (Session: PS05)
Pierre Lafont
University of Edinburgh
"Capturing Bacterial Ecology in models of antibiotic treatments"
Understanding how bacteria react to antibiotic challenge is key in optimising treatments. Bacteria grow in an ever-changing environment, where growth is limited by competition for space and/or resources. But bacteria can also cross-protect or help each other, for instance by absorbing or degrading antibiotics. When faced with treatment, a denser population may thus be able to tolerate a higher dose. Upon lysis, bacteria cells can also release nutrients that will be recycled for others. These multiple potentially counteracting factors highlight the need for mathematical models to understand the effects of these ecological interactions. From simple to complex formulations, even in ODE systems, there are many modelling choices one can make depending on the processes of interest. Here we aim at a clear overview of the different modelling approaches available and what they mean biologically. We recognise a lack of extended mathematical analysis in the literature and aim to develop a more thorough understanding of model behaviours through equilibrium and stability analysis. Ultimately, we aim to understand how ecological forces of both competition and cooperation affect bacterial population response to antibiotics and probability of resistance emergence.
POPD-5 (Session: PS05)
Tahani Alkarkhi
University of Essex
"Population Dynamics and Pattern Formation in a Plankton Model"
We study a spatio–temporal prey–predator model of plankton. This model has spatial interaction terms, which has the DeAngelis-Beddington functional response, to describe the grazing pressure of microzooplankton (M) on phytoplankton (P) is controlled through external info–chemical (C) mediated predation by copepods (Z). The Beddington DeAngelis functional response plays a critical role in modeling plankton. It is an advance on the prey-dependent Holling's type II functional response. It can be used to explain the predators' per capita feeding rates on prey. This functional response can also be used to provide better descriptions of predator prey abundances and how these affect predator feeding, discussed that in their predator prey system, Beddington DeAngelis was used to describe mutual interference by predators within the ecosystem. In relation to this, the concept was used to highlight the effect of changes in prey density on the predator density attached per unit time.The Beddington DeAngelis functional response can be used to perform a detailed mathematical analysis of the intra-specific competition among predators. We undertake a stability analysis of the two species model and compare the system dynamics. In relation to this, the critical conditions for Kinesis are derived; these are necessary and sufficient.
POPD-6 (Session: PS05)
Anni S. Halkola
Department of Mathematics and Statistics, University of Turku, Finland
"Strategy dynamics in a metapopulation model of cancer cells"
Tumors consist of cells with abnormal phenotypes. These cells might be or become cancerous, which can lead to increased cell growth and even metastases. In this work, we have considered cancer as a metapopulation, in which habitat patches correspond to possible sites for a cluster of cancer cells. Cancer cells may emigrate into dispersal pool ( e.g. circulation system) and spread to new areas (i.e. metastatic disease). In the patches, cells divide and new mutations may arise, possibly leading into an invasion if the mutation is favorable. We consider various relevant strategies (phenotypes), such as the emigration rate and their contribution to angiogenesis, which is an important part of early stages of tumor development. We use the metapopulation fitness of new mutations to investigate how these strategies evolve in cancer through natural selection and disease progression. We further add treatment effects and investigate how different therapy regimens affect the evolution of the strategies. These aspects are relevant, for example, when examining the process of a benign tumor becoming cancerous, and how to best treat the early stages of cancer development.
POPD-7 (Session: PS05)
Kyohei Suzuki
Akita Prefectural University
"Collective behavior and ambient flow in barnacle cypris larvae"
Barnacles are small crustaceans, having two types of larval periods. While both of them swim, cypris larva is specialized in searching for and attaching to a surface without feeding. They tend to live in groups. It is known that the grouping can be induced by the settlement-inducing protein complex (SIPC). However, the grouping may be induced by various other factors such as phototaxis, water flow, substrate state, and communication between individuals. Few studies have focused on the detailed behavior of cypris larva, and none has on its collective nature. The phenomenon of collective behavior can be confirmed in various organisms. It is natural to expect some collective behavior of cyprids while swimming, since they live in groups, but no definitive evidence has been found. In this work, we visualized the flow around cypris larva during swimming, quantified the state of collective behavior, and calculated various statistics such as the correlation coefficient, in order to elucidate the communication between allogeneic individuals. We found the surrounding viscous flow and the small yet nontrivial correlation between them.
POPD-8 (Session: PS05)
Román Zapién-Campos
Max Planck Institute for Evolutionary Biology
"The effect of fitness differences in death-birth models with immigration"
Mathematical models have been instrumental in understanding the dynamics of ecological systems. Notable examples are models where the events of death, birth, and migration of individuals within a community only depend on their abundance. In other words, rates are equal regardless of the specific population.The proven utility of such models, used from gut microbiomes to forests, lies in their capacity to contrast experimental data to a 'neutral' prediction. Surprisingly, such predictions often agree with experimental data, indicating that population-specific rates might be absent or at most irrelevant.But what if, instead, rates are assumed to be population-specific in these models? What patterns emerge? How resilient are the neutral community patterns? Our work addresses these questions incrementally, going from simple to many-populations communities. We focus on changes in various community composition indicators, specifically, on the occurrence-abundance pattern and how to identify 'non-neutrality' in data.
POPD-9 (Session: PS05)
Alan Scaramangas
City, University of Lodnon
"Evolutionarily stable aposematic signalling in prey-predator systems where the prey population consists of one species."
Aposematism is the signalling of a defence for the deterrence of predators. Our research focuses on aposematic organisms that exhibit chemical defences, which are usually signalled by bright skin pigmentation; although our treatment is likely transferable to other forms of secondary defence. This setup is a natural one to consider and opens up the possibility for robust mathematical modelling: the strength of aposematic traits (signalling and defence) can be unambiguously realised using variables that are continuously quantifiable, independent from one another and which together define a two-dimensional strategy space. We develop a mathematical model and explore the joint co-evolution of aposematic traits within the context of evolutionary stability. Even though empirical and model-based studies are conflicting regarding how aposematic traits are related to one another in nature, most allude to a positive correlation. We suggest that both positively and negatively correlated combinations of traits can achieve evolutionarily stable outcomes and further, that for a given level of signal strength there can be more than one optimal level of defence. Our findings are novel and relevant to a sizeable body of physical evidence, much of which could, until presently, not be addressed in terms of a single, well-understood mechanism.