CDEV-PS04

The Dynamics of Vesicles Driven Through Closed Constrictions by Molecular Motors

Wednesday, June 16 at 03:15pm (PDT)
Wednesday, June 16 at 11:15pm (BST)
Thursday, June 17 07:15am (KST)

SMB2021 SMB2021 Follow Wednesday (Thursday) during the "PS04" time block.
Share this

Youngmin Park

Brandeis University
"The Dynamics of Vesicles Driven Through Closed Constrictions by Molecular Motors"
We study the dynamics of a model of membrane vesicle transport into dendritic spines, which are bulbous intracellular compartments in neurons driven by molecular motors. We explore the effects of noise on the reduced lubrication model proposed in [Fai et al, Active elastohydrodynamics of vesicles in narrow, blind constrictions. Phys. Rev. Fluids, 2 (2017), 113601]. The Fokker-Planck approximation fails to capture mean first passage times of velocity switching (tug-of-war effect), and the agent-based model is computationally expensive. For relatively efficient computations, we turn to the master equation and find that it requires an additional calculation to account for non-equilibrium dynamics in the underlying myosin motor population. We discuss remaining questions and future directions in this ongoing work.










SMB2021
Hosted by SMB2021 Follow
Virtual conference of the Society for Mathematical Biology, 2021.